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Numerical bifurcation study of electrohydrodynamic convection in nematic liquid crystals
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We present the results of a numerical investigation of the Ericksen-Leslie equations for the problem of
electrohydrodynamic convection in a nematic liquid crystal. The combination of a finite element approach and
numerical bifurcation techniques allows us to provide details of the basic flow and include the physically
relevant effect of nonslip side walls. We are also able to include material properties as parameters and this
permits us to draw comparisons with available experimental data. We then compare and contrast the bifurca-
tion structure with that of Rayleigh-Bard and Taylor-Couette flows and explore the role of symmetries by
including a fringing electric field.
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[. INTRODUCTION torques in anisotropic fluids by charge segregation. The pro-

posed disturbance of the director field and resulting charge

It has been well known since the paper by Helfr[dh, separation, fI(_)w, and hydr_odynamic_ torque is describ_ed sche-
that when an electric field is applied across a thin layer ofnatically in Fig. 2. It provided a satisfactory explanation for
nematic liquid crystal, a hydrodynamic instability can occurthe experimental observation of roll instabilities by Williams

- " e 6] and Kasputin7]. Helfrich’s dc model was extended to
above a cr|t|cal_f|eld s_trength. In modern parlan_ce, this Is arl’éime-dependent fields by Dubois-Violete al, [8] since
example of a bifurcation and the purpose of this work is 0 ost experiments are performed using ac fields to avoid

compare and cor)tra_st its c_he_lracteristics Wi.th t,he more familE)ractical problems associated with charge injection when dc
lar hydrodynamic instabiliies of Rayleigh-Bard and qtages are applied. They found different types of instability
Taylor-Couette flows. The length and velocity scales in-occyrring at low and at high frequencies, and called the
volved in these microscopic flows are small so that the Reyformer the conduction and the latter the dielectric regime,
nolds number is very much less than one. The nonlinearityyith a critical frequency dividing the two. The one-
which gives rise to the instability originates in the material dimensional theories of Helfrich and Dubois-Violeteal.
properties. Nematic liquid crystals differ from normal isotro- were extended to two dimensions by Penz and F8tavho
pic fluids since they exhibit long-range orientational order-took into account the upper and lower boundaries. A review
ing. They contain rodlike molecules which are arranged, orof this early work is given by 10]. The experimental work
average, with their long axes parallel to one another. Théias also been developed [iyl] and[12] to include multiple
direction of alignment can be described by the unit veator patterns and spatiotemporal chaos including defects. A mod-
which is called the director. However, they flow readily sinceern account of this research can be found1g].
their usual viscosity is comparable with that of normal fluids.  Nonlinear pattern forming instabilities in electrohydrody-
The continuum equations of motion for a nematic are thenramic convection have been explored 4] and[15] using
Ericksen-Leslie equations and there is considerable evidenge Galerkin projection approach. In order to explore the
to suggest that they provide a good model of the flow propsteady-state selection mechanisms which establish the form
erties. The interested reader is referredi2@], and[4] fora  of the primary cellular flows, we have adopted a general
discussion of the rich properties of nematic and other liquidfinite-element technique instead. This provides the added ad-
crystals. vantage of making the investigation of the effect of varying
The basic experimental configuration is shown in Fig. 1.boundary conditions at both the top and bottom surfaces and
The first explanation of electrohydrodynamic convection bythe lateral walls straightforward.
Helfrich [1] extended ideas of Caf] on the creation of ,
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director orientation nini=1 (1)
( ]
SoNSmogoasNoSeo o> B apply, wherev is the fluid velocity.
' / B/ U ’ Balance laws representing conservation of linear and an-
1 N ] gular momentum are
electrode Pvi:PFi'*'tij,j ) 3
space charge density
pMi+eijktkj+|ij'j=0, (4)

FIG. 2. Schematic diagram of the Carr-Helfrich instability
mechanism. whereF andM represent body forces and moments per unit
masst andl are the stress and couple stress tensors, respec-

The onset of convection can be considered as a pitchforkiVely, the superposed dot denotes the material time deriva-
bifurcation, where the flow breaks the midplane symmetrytiVe andej is the alternating tensor. The inertial term has
and is analogous to Rayleigh-Bard convection with a been omitted from the second equation, since it is generally
Boussinesq fluid. To date, attempts to observe both branch&§nsidered negligible. The stress and couple stress tensors
of the pitchfork bifurcation experimentally have failed, seehave the form
[16] and[17], where the side boundary conditions are differ-
ent in each case. This is unlike the situation with Rayleigh- ti=—pés— ﬂn e (5)
Benard convection where the full bifurcation structure has ! . K oo
been observed in small aspect ratio experimentglB8yand
[19], but is qualitatively the same as for Taylor-Couette flow IW
as reviewed by20]. One motivation of the present study was lij= eipqnpan_qj’ ©)
to attempt to understand this paradox. Hirata and Tal6d ’
have proposed a physical explanation for their observationhere the pressure, arises from the constrai), W is the

based on the existence of free ions having only one sign angiastic energy density, arids the dynamic part of the stress

the observed localization of impurities near the walls.  tensor. The elastic energy density is assumed, following
Our numerical approach allows us to explore finite-sizeprank[27], to have the form

effects which are of great practical significance since many

modern devices using these materials are becoming smaller  2W=K(n; ;)?+Ka(n;ejjn j)*+Kzn; gNpn; oNg

and there is a need for a detailed understanding of flow prop- )

erties. In addition, practical difficulties in dealing with mul- + (K Kg) [N jnn,i = (ni,)7], @)

tiplicity in the solution set in detailed scientific studies of h heK he elasti ffici hich
instabilities has led to some investigators using microscopi ere thek; are the elastic coefficients which are constants
or a given material. Following arguments proposed by

apparatus to isolate individual dynamical events which lead-". K 28] the elasti :

to low-dimensional chao$See[16,21,22,23,2% and[17].) ricksen[ 28], the elastic constants satisfy

Hence there is also a need here for calculations of flows in

finite domains. Ki=0, Ko>0, Kg=0. ®)

We first discuss the essential details of the equations ofpege conditions are necessary in order that the conforma-
motion and outline the numerical methods used to solv§jon of the undistorted nematic corresponds to a minimum of
them. The detailed structure of one particular fully nonlinearhe free energy.
convecting solution is shown to be in accord with the Carr- e dynamic part of the stress tensor is linear in the ve-
Helfrich model. We then discuss the role of aspect ratio an%city gradients and has the form
boundary conditions on the convecting solutions and show
how multiple stable solutions arise via secondary bifurcation.’f,, = a1NyNSyNini + aoNin: + a3Nini+ a4 S + asS;;NN;
The advantage of our numerical approach is then exploited to'! ~ ~ = P <Pk T T2 3T T 4=t s =p et

investigate the effect of material properties on electrohydro- +agSjpnpn;, 9
dynamic instabilities. Finally, we address the physically rel-
evant situation of the effects of a fringing electric field. where

1 1
=—(p: i 4v =—(0: i —D == AN
Il. GOVERNING EQUATIONS AND NUMERICAL Sj=ZWitvi), Aj=g @i, Ni=hi=Ayn;,
METHODS (10)

The continuum theory of Ericksd@5] and Leslig26] for  and the viscosity coefficients; are constants. Throughout
nematic liquid crystals assumes that the average moleculaye adopt the Parodi relatidi29]
axis is described locally by a unit vectorand that the ma-
terial is incompressible. That is, the constraints ag=ar,+aztas. (11)
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The intrinsic viscous moment in E) is then €Di i=pe, (22
eijk[’fij]:eijknj’gka (12) petijii=0, (23

where[t] represents the skew-symmetric parttaind respectively, wher® is the electric displacement given by
Gi=(az—az)Ni+(as—ag)S;n;. (13 Di=e, E;+AeE;n;n; (24)

Likewise, the body moment arising from the external electric is the ch densi ithin th ial
field can be written in terms of a contribution associated With(see_’ _e.g.[30]), pe IS the charge density within the materia
n and one has andj is the current density given by

pMi=eijkank, (14) ji:(TJ_Ei_l—AO-Ejnjni’ (25)
Gi=e€oAe(Ejn))E;, (15 Ao=o—0, (26)
Ae=¢—€,, (16 where the nematic’s conductivities parallel and perpendicu-

lar to the director are given by, ando, , respectively. For
wheree, and e, denote the dielectric susceptibilities of the most nematic materialdo is positive. Finally,
material parallel and perpendicular to the director, respec-

tively. eijkEx j=0. (27)
Using Eqgs(12) and(14), the angular momentum equation
becomes A recent extension of the above description for electrohydro-
W W dynamic convection has been proposed&i] who consider
‘9_ _ ‘9_ LE _: two active ionic species. A bipolar electrodiffusion model
+Gj+G;+yn;=0, (17) - . - .
an; j an; may provide an explanation for the direct onset of traveling

waves observed in thin samples of nematic liquid crystals
where the scalay is a Lagrange multiplier which arises from with low conductivity when subject to a high-frequency ac
the constraintl). The balance of linear momentum equation applied field. The standard model is however believed to be
becomes appropriate for the parameter regimes considered in the
present study.
(19 Based on experimental observations of the initial instabil-
ity we assume that the flow is two dimensional so that the
with director, velocity, and electric field vectors satisfy

pvi=pFi=P,i+hi+1 ;,

P=p+W+y, (19 n=(co0sh,0,sind), v=(u,0p), E=(—¢,,0~¢,),
(28)
and
- where#d, u, v, and¢ are all functions ok andz. We assume
hi=G;n;;, (200 that the nematic liquid crystal is subject to an external dc
) . ~electric field acting on the area=[—1/2/2] X[ —d/2,d/2]
wherey denotes the energy associated with the electric fieldyith the edges of the active area beingxat +1/2 and the
Finally, to place restrictions on the viscosity coefficients, Weplates atz= + d/2. Most experiments are performed using ac

use the entropy inequality fields to minimize the problem of charge injection at the
- 5 electrodes. Despite the fact that we consider the dc case
(ti;)S;—GiN;=0, (21)  without charge injection we obtain good agreement with ex-

perimental results. The angteis a measure of the deflection

where the round brackets indicate the symmetric part of thef the director away from alignment with the plates ahés
dynamic stress tensar the electric potential. Notice that the expressionstfandE

Equations(17) and (18) together with Eqs(7), (9), (10), automatically satisfy the constraints) and(27). The modi-
(13), and (15 are generally known as the Ericksen-Leslie fied pressurep, and the charge density,., are also as-
equations and model flows of nematic liquid crystals that arssumed to be functions of andz alone. In order to simplify
free of ions. However, these equations are insufficient to dethe problem somewhat we neglect inertial tertase[32])
scribe electrohydrodynamic convection in nematics sincend seta; =0, sincea; has been found to be very small in
ionic impurities are always present and the movement of ionsnost instances.
in the sample comprises an essential part of the instability In order to implement the finite-element method, the gov-
mechanism as described b§]. We, therefore, supplement erning equations and boundary conditions were recast in
the Ericksen-Leslie equations with Poisson’s equation angveak form. The resulting equations were nondimensional-
the equation for conservation of charge. These are ized by introducing the dimensionless variables
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X—T, Z—a, U—EU, U—aEU, D—Rp,
o b= (29
¢ €p€L do Per &= o ¢

wherek=K/a,, and the dimensionless parameters

Ks eoelqﬁ(z, | kege,
K= M= e
Kl K d U'Ld
_ g O
E__l — T, (30)
€ o)

all of which are positive apart fromu (for flow aligning,
rodlike nematicsa,<0). Unless stated otherwise, we will
use the physical values appropriate for MBBA[MN-(p-
methoxybenzylidenep-butylaniling] as listed in Appendix
D of [33], namely

€e=0.8 ando=1.5 (31

and the viscosity coefficients,

a=—0.1, a3=-0.0011, «,=0.0826, «@5=0.0779,

(32

in units of kgm s,

For a cell with a thickness of ten of microns which is
typical for many experiment$u|~102 and for simplicity,
we set

pn=0. (33
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ered here is unchanged if it is reflected about the horizontal
midplane between the plates or about the vertical midplane.
The discretized equatiori84) are equivariant with respect to

a representation of th&,x Z, symmetry group orRN. Our
treatment of the symmetries follows that described 36|
who investigated the simpler problem of lBd convection
problem in a rectangular cavity.

Nontrivial branches were found to bifurcate from the
trivial, nonconvecting state with an increase in the electric
potential at a symmetry-breaking bifurcation point. The or-
dering of the bifurcations to 1-, 2-, and 3-cell flows was
determined by the aspect ratio. We will call a solution which
bifurcates from the trivial solution, a “primary” flow. The
primary one-cell flows are symmetric with respect to reflec-
tion about the diagonal of the rectangular domain. It is pos-
sible for the stability of the one-cell flows to change at
symmetry-breaking bifurcation points, called secondary bi-
furcations points. The primary two-cell flows are symmetric
with respect to reflection about the vertical midplane. Sec-
ondary bifurcation points along the two-cell primary
branches at which the stability of the two-cell flows changes,
are associated with breaking of this reflectional symmetry.
The primary three-cell flows have a threefold translational
invariance when stress-free boundary conditions are applied.
Secondary bifurcations along primary three-cell branches are
transcritical in nature and are associated with the breaking of
this threefold invariance.

The results of two convergence studies, for stress-free and
for nonslip boundary conditions at the lateral walls, are given
in the Appendix.

IIl. RESULTS

A. Stress-free lateral boundary conditions

No-slip velocity boundary conditions and planar anchor-
ing of the director were applied at the top and bottom plates. We begin the presentation of the results by discussing
The charge density, was required to be zero along the details of the structure of a “typical” nontrivial convecting
conducting plates. Both no-slip and stress-free lateral wallflow. The stream function and contours of the director rota-
were considered. Homeotropic anchoring of the director wasion, charge density and electric potential fields are shown in
applied on the no-slip lateral walls which were assumed tdrigs. 3a)—3(d) for a primary three-cell flow at an aspect
be perfectly insulating. The electric potentials at the top andatio of 1.5 and\ =414.23 or 1.44 times the critical value at

bottom plates weret ¢y/2 respectively, wherep, was the
strength of the applied field.
The finite-element codeNTWIFE (see[34]) was used to

this aspect ratio. The voltage is thus 1.2 times the value at
which the nonconvecting solution loses stability to three-cell
flows. As may be seen in the stream-function plot in Fig.

solve the coupled equilibrium equations and boundary con3(a), there are three cells which rotate in counterclockwise,
ditions, and to construct and solve the necessary extendediockwise, and counterclockwise directions from left to right,

systems to compute loci of singular points. Isoparametricespectively. There is upward flow between the first and sec-
quadrilateral elements were employed with biquadratic interend cells and the return downward motion lies between the
polation for the velocity componenésandd, director angle second and third cells. The directors are aligned parallel to

6, charge densitp,,, and electric potentiab. Discontinuous ~ the top and bottom plates between the cells where the fluid
linear interpolation was used for the modified pressure fieldnotion is perpendicular to the walls, as shown in Fith)3
B. For all choices of boundary conditions considered her They are rotated in a counterclockwise direction in the first

the application of the finite-element method to the weak for nd third cells and clockwise in the middle cell, consistent

m

rMvith the direction of flow. There is an accumulation of nega-
tive charges between the first and second cells as can be seen
in Fig. 3(c). These are attracted towards the positively
charged upper plate. A corresponding concentration of posi-
tive charges occurs between the second and third cells which
Apart from the problem involving fringing electrical field are attracted towards the lower plate. The electric potential
discussed in Sec. lll E the boundary value problem considplot shown in Fig. 8) reflects this accumulation of charge,

of equations of the form

f(ab)=0, f:RVXRP++—RN. (34
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FIG. 3. Primary three-cell flow with stress-free lateral boundaries=at14.23 and aspect ratio 1.&8) Streamlines(b) Director angle,
6. (c) Charge densityp. (d) Electric potential,¢». Solid lines represent positive contour values, dashed lines represent negative contour
values.

where the isopotential lines are seen to be deflected towardslue of the parametek at which convection occurs is
the upper plate in regions where there is accumulation oh~287 which corresponds to 5.7 volts for MBBA. This
negatively charged ions and deflected towards the lowevalue for the critical field strength is consistent with the re-
plate in regions where there is accumulation of positivesults of linear stability analyses performed [8] and[33].
charges. All of these features of the flow are consistent wittHenceforth we will report critical field strengths in terms of
the instability mechanism described pj. voltages, where volts 0.34y\.

The minimum value for the critical field strength occurs
for rolls of width 0.48%l, i.e., approximately one-half of the
The critical voltages at which the nonconvecting solutiondistance between the plates. Defining wave nuntper be
loses stability to one-, two-, and three-cell flows are plottedthe number ofpairs of cells occurring in a length of 2d
as a function of the aspect ratioin Fig. 4. The minimum  parallel to the platesq;=(2d)/(2*0.485)=2.067. In

The role of aspect ratio, +=1/d
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7.0

smooth exchange of priority and stability of the two primary
branches is mediated. The exchange process is modified
slightly in the case of the two-cell-three-cell interaction,
since the secondary bifurcations on the three-cell flows are
transcritical in nature.

The secondary bifurcations described here restabilize un-
stable flows allowing multiple stable solutions to exist. This
multiplicity of solutions is important as they play a major
role in low-dimensional dynamics as discussed 89

6.5 |

Volts

6.0 |
B. Nonslip lateral boundary conditions

Imposing nonslip rather than stress-free lateral boundary
conditions has a quantitative effect not only on the critical
55 . . . . : . field strength but on the convecting state that arises once this

02 040808 012 1418 critical voltage is exceeded. The symmetries of the problem
remain unchanged and convecting flows arise from the
FIG. 4. Critical field strength in volts vs aspect ratiofor bi- trivial, conducting solution at pitchfork bifurcation points as
furcation to one-, two-, and three-cell flows with stress-free laterafn the stress-free case. Considerations of symmetries alone
boundaries. would lead one to expect electrohydrodynamic convection in

finite regions to behave similarly to confined Rayleigh-

very large aspect ratio domains we, therefore, expect talBenard convection. This is at odds with experiments in
thin rolls to be favored, a prediction that is consistent withWhich flows corresponding to only one branch of the pitch-
the experimental observations 6,37 (and with[24] and fork bifurcation have been observed, and is the subject of the
[17]), but a factor of 1/3 larger than that predicted by theCUrrent investigation. ,
Floguet analysis of33] (Fig. 3, p. 1881 for the limiting dc Contours of t_he dlrect'or angle and the charge densny fora
case. Our conclusion is not consistent with the essentiallpn€-cell flow with nonslip lateral walls at an aspect ratio of
circular rolls reported byf11] and predicted by the linear 0-5andA=1060(1.21 times the critical valyeare shown in
stability analysis of9]. The latter work was performed for Figs. 9@ and §b). For comparison the director angle and
PAA (p-azoxyanisolg at 125°C which has very different charge density for a one-cell flow with stress-free lateral
values for the dielectric anisotropy, conductivity anisotropy,Poundaries at an aspect ratio of 0.5 and348.1(1.21 times
and elasticity ratio than those used here. Our computationd€ critical valug are shown in Figs. (&) and d). The over-
studies have shown, however, that while all of these materill features of the flow are consistent with the Helfrich
properties affect the most unstable wavelerigée Sec. Il D mechanism, as in the stress-free case, but there are signifi-
for a discussion of the role of the dielectric anisotrppif- cant differences between the two situations. The effect of the
ferences in material properties alone are insufficient to aclateral walls on the streamlines is not very dramatic and they
count for such a large discrepancy in the critical wavelength@® not shown. The streamlines are simply more elliptical
Given the contradictory experimental evidence, the issue i¥ith the major axis of the ellipse aligned with the end walls.
still one for debate, but we suggest that the more sophistiTh'S reorientation of the flow field is also manifest on com-
cated approximation of the unstable eigenvector afforded baring the contours of director angle shown in Figs) and
our finite-element approach accounts for the difference witP(C)- There are now regions adjacent to the end walls where
previous stability analyses. Both the linear stability analysighe director is rotated in the opposite sense to the principal
of [9] and the Floquet analysis dB3] assume that the  Orientation. Surprisingly, however, the maximum positive ro-
dependence of the unstable mode can be approximated byt%tlon of the directors is approximately the same in the two
single sinusoid, yet our finite element computations disclos&a@Ses(Recall that both flows are shown farapproximately
a much more complex structure. 1.21 times the critical valugThe regions of weaker negative

Distinct solution branches which arise at primary bifurca-@nd positive charge densities near the left-hand and right-
tion points on the trivial solution can swap priority as a sec-hand walls shown in Fig. (6) are also something of a sur-
ond parameter is changed. Secondary bifurcations mediaf¥ise- These border the closed regions of charge in the inte-
the smooth exchange of stability between flows with differ-"ior of the flow which are not present in the stress-free case
ent numbers of cells as the aspect ratio is varied. The dash&fown in Fig. 3.8d). The maximum and minimum charge
line in Fig. 4 is a path of secondary, pitchfork bifurcation densities in Fig. &) have amplitudes nearly twice those in
points on the one-cell flow branches. The chained lines arEi9- (d). Close comparison of the electric potential reveals
paths of secondary, pitchfork bifurcation points on the two-the influence of the different charge density distributions in
cell flow branches, and the dotted line indicates secondary!€ tWo cases, but the differences are minor and are again not
transcritical bifurcation on the three-cell branches. In theShown.
case of the one-cell-two-cell interaction, the exchange of
stability takes place via the nine-branch mechanism dis-
cussed by 38]. At the critical value of the aspect ratio, pri-  We present the results of calculations of the neutral sta-
mary and secondary bifurcation points all converge and #ility curves in the aspect ratio, voltage plane for the onset of

Role of aspect ratio, +=1/d
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(b) C)

FIG. 5. Primary one-cell flow with nonslip lateral boundariea.at1060 at aspect ratio 0.5a) Director angle 6. (b) Charge densityp.
Primary one-cell flow with stress-free lateral boundariex-aB48.1 at aspect ratio 0.5¢c) Director angle,f. (d) Charge densityp. Solid
lines represent positive contour values, dashed lines represent negative contour values.

one to five convection cells in Fig. 6. The solid lines desig-the sameZ, symmetry, is not stable with respect to small
nate loci of parameter values where stable convecting solyerturbations. This was found to be true even when the per-
tions bifurcate from the no flow state and the dashed curvegtirbations respect th&, symmetry. The bifurcations to
indicate paths of the origin of unstable solutions. The num-1-cell and 3-cell flows(and indeed to all odd-numbered
bers below the curves denote the particular state which biflows), break the same symmetries and hence the double sin-
furcates first in the given aspect ratio range. gular point at which these two neutral stability curves inter-
Cliffe and Winters [35] investigated two-dimensional sect becomes disconnected. We only show the smaller of the
Rayleigh-Baard flow in small aspect ratio containers andtwo critical field strengths for the bifurcation to either 1- or
considered it as a two parameter problem vidghx Z, sym-  3-cell flows. The disconnected upper parts of the neutral sta-
metry. They showed that the double zero eigenvalue correbility curves are not shown for the sake of clarity. Similarly,
sponding to the intersection of two bifurcations which breakbifurcations to 2- and 4-cell flow&nd indeed to all even-
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-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 20 30
55 L L . L Ae
0.5 1.0 1.5 2.0 2.5 3.0
" FIG. 8. Critical field strength in volts vs dielectric anisotropy
FIG. 6. Critical field strength in volts vs aspect ratiofor cel-  Ae, for bifurcation to one-cell flows with stress-free lateral bound-
lular flows with nonslip lateral boundaries. aries at aspect ratio=0.5. Triangles indicate the experimentally

determined values frorf¥0].

numbered flowsinvolve the breaking of the sani®, sym- ] )
metry and the double singular point at which their two neu-computed using a 3232 element grid on one-quarter of the
tral stability curves intersect is also not stable. Once agairdomain. The effect o on the critical voltage has previously
only the lower part of the neutral stability curve for even-cell P€en investigated by Barnikt al. [40] who obtained good
flows is shown in Fig. 6. Secondary bifurcations will again @greement between experimental data and results from two-
exist along the primary two-cell branches but these are ndiimensional models. It is to be expected that the locus of
shown. critical voltage is asymptotic to the line=1, since that this
point oy=0, , and the charge separation required for the
Carr-Helfrich instability mechanism cannot occur. Despite
the fact that our results were calculated for MBBA | and dc
A significant advantage of the numerical approach wdfields, rather than the doped MBBA mixtures and ac fields
have developed is that it allows us to include material propused by{40], we obtained good quantitative agreement with
erties as parameters in the equations and to follow paths dhe experimental results.
critical points as a function of these parameters.

C. Continuation studies with stress-free lateral walls

2. The role of dielectric anisotropyAe=¢,—€, =1—¢€

1. The role of conductivity anisotropyg-= . . . . .
y Pyr=oy/o, We show in Fig. 8 the effect of varying the dielectric

We show in Fig. 7 the effect of varying the conductivity anisotropy on the critical voltage for bifurcation to one-cell
anisotropy on the critical voltage for bifurcation to one-cell flows at an aspect ratio of 0.5. These critical values were
flows at an aspect ratio of 0.5. These critical values werggain computed using a 332 element grid on one-quarter

of the domain. The dielectric anisotropy is evidentially a
- stabilizing factor forAe<O0, since the critical voltage in-
S pomputaton creases as the anisotropy decreases, i.e;, @sde, become
increasingly dissimilar. These results are largely in agree-
ment with those of[40] who investigated the parameter
range on either side ake=0. Interestingly our curve is ap-
proximately the same distance below the experimental points
as the theoretical work of Barnik when the dielectric anisot-
ropy is zero, despite the differences in material properties
(60=1.3, cf.o=1.5 andK=1.22, cf.K=1). However, unlike
[40], the slope of our numerical results is approximately the
same as the experiments. As we will show in Sec. IlI D, the
most unstable wavelength changes with the dielectric anisot-
ropy and we suspect that the difference between the two sets
of calculations originates in our choice of seeking the critical
field for a particular wavelength, as opposed to finding the
absolute minimum of the instability curves.

FIG. 7. Critical field strength in volts vs conductivity anisotropy ~ Note that forAe>0 we are still able to compute a critical
o, for bifurcation to one-cell flows with stress-free lateral bound- applied field at which an instability to a convective motion
aries at aspect ratio=0.5. Triangles indicate the experimentally arises. This is surprising, since fde>0 one would expect a
determined values frorf40]. static realignment of the molecules through a Freedericksz
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In(K) FIG. 10. Critical field strength in volts vs aspect ratiofor

one-cell flows with stress-free lateral boundaries ar®.9, 0.95,
FIG. 9. The natural logarithm of the critical voltage,(folts) vs 1.0, 1.05, 1.1, 1.2, 1.3, 1.4. Horizontal lines indicate the critical
the natural logarithm of the ratio of elastic constantsK)n(The field strength for a Freedericksz transition.
chained line is the least-squares best fit to the 10 largest values of
and has a slope of 0.41.

For €e=1.05 the minimum critical field for the onset of

transition as discussed #1]. The exchange between these electrohydrodynamic convection occurs below the critical
two types of instability forAe>0 will also be addressed in field strength at which a Freedericksz transition would occur

Sec. lID. and is, therefore, the preferred instability. Consistent with
[40], the results presented in Fig. 10 suggest that the transi-
tion between instability resulting in convection and the static
In Fia. 9 h lotted th wral 1 ith f th Freedericks transition is a continuous_one gr_ld that it occurs

in F1g. 9 we have plotte € natura’ fogantnm ot e |, een 1.05e<1.1. Fore=1.1 the loci of critical voltages
critical voltage for bifurcation to one-cell flows at an aspectfor electrohydrodynamic convection have no obvious
ratio of 0.5 against the natural logarithm of the eIaStiCityminima and approackirom abové the critical voltage for
ratio. It is clear that there is no simple relationship Vf"‘”d forthe Freedericks transition as the aspect ratio increases. The
Slrlo\;?rlr?aetzlgfsdubeijlttcfjoall<2>iﬁaitch:tir?g)?r?eosfqtggrgurrc;/ci :‘Selzit)i;) Freedericksz transiti_on is therefore the_ _preferred instability.
oredicted by[4] (p. 239 ’Their result. which is based on ar\Ne obser\{ed r_lumerl_c_ally that as the critical field strength fqr

v ) . ' . . __a convective instability approaches the value for a static
balance of elastl_c, _hydrodyngmw and elaspc_ torques, 1s %reedericks instability, the magnitudes of thendv com-
Egcstteig ;?f ebC?SV;Sg tlg ;g?al/lmlt of largkt as it ignores any ponents of the unstable eigenvectoe., the strength of the
' convective motiondecay, further suggesting a continuum of
behavior.

3. The role of elasticity ratio, K=K3/K;

D. The Freedericksz transition

We now focus on the influence of the dielectric anisot- 8.0
ropy on the wavelength of the most unstable mode. The criti-
cal voltage for the onset of one-cell flows is plotted as a
function of aspect ratio in Fig. 10 for a range of dielectric .
anisotropies. The dashed horizontal lines indicate the theo: 6o b i .
retical value of the critical voltage for the Freedericksz tran- ' -
sition for e=1.05, 1.1, 1.2, 1.3, and 1.4The critical value is Volts A
N=m%le — see[4], p. 135. Notice that for 0.8<e<1.05 ‘.
there is a distinct minimum in the neutral stability curves for )
the onset of electrohydrodynamic convection, suggesting tha 401
there is a favored wavelength in large aspect ratio experi-
ments. These minima are plotted in Fig. 11, where, consis-
tent with the results presented in Fig. 8, the critical voltage
decreases asincreases. The widths of a single cel| cor- R
responding to these minima, are plotted in Fig. 12, where it
can be seen that the most unstable wavelength increases dra-
matically (and in fact doublesas € increases from 0.6 to FIG. 11. Minimum critical field strength in volts vs dielectric
1.05. anisotropye, with stress-free lateral boundaries.
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n
E. The effect of a fringing field FIG. 14. Model problem to capture the effect of a fringing elec-

The precise nature of the fringing electric field in a nem-tric field at the lateral boundaries.

atic near the edge of an electrode is still a topic of ongoing
research—see, for examplp42] and [43]. These authors
suggest that the fringing field may extend for 1 or 2 gapbreaking bifurcation. One of the two possible two-cell flows
widths beyond the edge of the electrode. Figure 13 shows WIII arise with gradual increase of the electric f|e|d, while the
six-cell flow viewed from above with up-welling at the left- Other will occur as a disconnected secondary flow. Figure 15
and right-hand boundaries. The white lines indicate the edge§ @ bifurcation diagram for the case when 90% of the upper
of the two electrodes used to create an ac electric field. ThBoundary is conducting. We have chosen the vertical veloc-
lower electrode extends from left to right in Fig. 13, theity at the point & 2)=(—3/8,—-1/4), normalized so that
upper electrode extends from top to bottom of the figure. Théositive velocities are upwards, i.e0(—3/8,-1/4) as a
size of the active region is approximately 20000x50 um. ~ measure of the flow. The amount of disconnection is small
The surfaces of the electrodes have been prepared so asaad both types of even-cell flows would be expected to be
anchor the directors in the horizontal direction. For this mod-observed in an experiment. We suggest that there must be
erate voltage, the convection is clearly confined to the regio@nother mechanism to account for the experimental observa-
in which the electrodes overlap. Our approach was to replackon.
the upper electrode with a nonslip boundary for which only

the central region was a conductor and the two outer portions 4.0
were insulators, as shown schematically in Fig. 14. Only the
symmetry about the vertical midplane remains, so that flows
with an even number of cells do not arise via a symmetry-

1.0 |

0.0

-1.0 |

—6(—3/8,—1/4)

20 F

30}

4.0 1 . 1 . '
2.0 3.0 4.0 5.0 6.0 7.0 8.0

Volts

FIG. 15. Bifurcation diagram for the onset of two-cell flows at
an aspect ratio of 1.0 when modeling the fringing electric field. The
vertical velocity at the non-dimensionalized locatio,2)=
(—3/8,—1/4), normalized so that positive velocities are upwards,
FIG. 13. Experimental realization of a six-cell flow. i.e., —0(—3/8,—1/4) is plotted as a function of the applied voltage.
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TABLE I. Convergence study for stress-free lateral side walls. TABLE Il. Convergence study for nonslip lateral side walls.
N Ay (AN (AN)ni2/ (AN)n N Ay (AN (AN)ni2/ (AN
2 292.052 96 4 880.415 35
4 288.091 77 3.96119 8 876.317 25 4.09810
8 287.659 44 0.43233 9.16 16 875.996 45 0.32080 12.77
16 287.622 30 0.03714 11.64 32 875.97161 0.024 84 12.91
32 287.61970 0.002 60 14.28 64 875.969 88 0.00173 14.36
64 287.61953 0.00017 15.29

ence Foundation for supporting this work under Grant No.
IV. CONCLUSIONS DMS97-04714.

We have successfully carried out a numerical study of the
full Ericksen-Leslie equations for electrohydrodynamic con-
vection. Our approach has enabled us to investigate the ef- 1. Stress-free lateral boundary conditions
fects of finite geometries and varying material properties and |y Taple | we tabulate the critical paramelecorrespond-
the latter has shown good quantitative agreement with availng to the onset of one-cell flows for an aspect ratiog of
able experimental data. Hence we are able to conclude thatg 5 The top and bottom boundaries were conducting

our results are relevant to the more common experimenta|ates and stress-free conditions were applied at the lateral
situation where ac fields are used. _ side walls. The computations were performed ushg N

A primary goal of our work was to relate the steady bi- glement uniform grids on one-quarter of the domain.h.be
furcation structure in this problem to those of Rayleigh-ihe characteristic size of the elements. A superconvetfent

Benard flow, which it resembles most closely mathemati-;symptotic convergence rate is indicated, since it appears
cally and Taylor-Couette flow, which it recalls

experimentally. We have been partially successful in this

APPENDIX: CONVERGENCE STUDIES

with the exception of elucidating the observed apparently (AN e
large disconnection of the first bifurcation in experiments. lim (ATZlG’
Inclusion of a fringing field is insufficient to produce the N=e N

desired effect. We, therefore, speculate that introducing th
flexoelectric effect into the problem as suggested[&%]
may be the way forward. This will change the symmetry
properties and the disconnection of the resulting transcritical
bifurcation by a fringing field, may be sufficient to explain ~ Table Il shows the critical parametgrfor the bifurcation
the observed properties. This is the subject of future refrom the nonconvecting state to the primary one-cell flows
search. given conducting top and bottom plates and nonslip lateral
side walls at an aspect ratic=0.5.
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