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Numerical bifurcation study of electrohydrodynamic convection in nematic liquid crystals
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We present the results of a numerical investigation of the Ericksen-Leslie equations for the problem of
electrohydrodynamic convection in a nematic liquid crystal. The combination of a finite element approach and
numerical bifurcation techniques allows us to provide details of the basic flow and include the physically
relevant effect of nonslip side walls. We are also able to include material properties as parameters and this
permits us to draw comparisons with available experimental data. We then compare and contrast the bifurca-
tion structure with that of Rayleigh-Be´nard and Taylor-Couette flows and explore the role of symmetries by
including a fringing electric field.
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I. INTRODUCTION

It has been well known since the paper by Helfrich@1#,
that when an electric field is applied across a thin layer
nematic liquid crystal, a hydrodynamic instability can occ
above a critical field strength. In modern parlance, this is
example of a bifurcation and the purpose of this work is
compare and contrast its characteristics with the more fa
iar hydrodynamic instabilities of Rayleigh-Be´nard and
Taylor-Couette flows. The length and velocity scales
volved in these microscopic flows are small so that the R
nolds number is very much less than one. The nonlinea
which gives rise to the instability originates in the mater
properties. Nematic liquid crystals differ from normal isotr
pic fluids since they exhibit long-range orientational ord
ing. They contain rodlike molecules which are arranged,
average, with their long axes parallel to one another. T
direction of alignment can be described by the unit vecton
which is called the director. However, they flow readily sin
their usual viscosity is comparable with that of normal fluid
The continuum equations of motion for a nematic are
Ericksen-Leslie equations and there is considerable evide
to suggest that they provide a good model of the flow pr
erties. The interested reader is referred to@2,3#, and@4# for a
discussion of the rich properties of nematic and other liq
crystals.

The basic experimental configuration is shown in Fig.
The first explanation of electrohydrodynamic convection
Helfrich @1# extended ideas of Carr@5# on the creation of
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torques in anisotropic fluids by charge segregation. The p
posed disturbance of the director field and resulting cha
separation, flow, and hydrodynamic torque is described sc
matically in Fig. 2. It provided a satisfactory explanation f
the experimental observation of roll instabilities by William
@6# and Kasputin@7#. Helfrich’s dc model was extended t
time-dependent fields by Dubois-Violetteet al., @8# since
most experiments are performed using ac fields to av
practical problems associated with charge injection when
voltages are applied. They found different types of instabi
occurring at low and at high frequencies, and called
former the conduction and the latter the dielectric regim
with a critical frequency dividing the two. The one
dimensional theories of Helfrich and Dubois-Violetteet al.
were extended to two dimensions by Penz and Ford@9# who
took into account the upper and lower boundaries. A revi
of this early work is given by@10#. The experimental work
has also been developed by@11# and@12# to include multiple
patterns and spatiotemporal chaos including defects. A m
ern account of this research can be found in@13#.

Nonlinear pattern forming instabilities in electrohydrod
namic convection have been explored in@14# and@15# using
a Galerkin projection approach. In order to explore t
steady-state selection mechanisms which establish the
of the primary cellular flows, we have adopted a gene
finite-element technique instead. This provides the added
vantage of making the investigation of the effect of varyi
boundary conditions at both the top and bottom surfaces
the lateral walls straightforward.

FIG. 1. Schematic diagram of a cell.
©2000 The American Physical Society08-1
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The onset of convection can be considered as a pitch
bifurcation, where the flow breaks the midplane symme
and is analogous to Rayleigh-Be´nard convection with a
Boussinesq fluid. To date, attempts to observe both bran
of the pitchfork bifurcation experimentally have failed, s
@16# and@17#, where the side boundary conditions are diffe
ent in each case. This is unlike the situation with Rayleig
Bénard convection where the full bifurcation structure h
been observed in small aspect ratio experiments by@18# and
@19#, but is qualitatively the same as for Taylor-Couette flo
as reviewed by@20#. One motivation of the present study wa
to attempt to understand this paradox. Hirata and Tako@16#
have proposed a physical explanation for their observa
based on the existence of free ions having only one sign
the observed localization of impurities near the walls.

Our numerical approach allows us to explore finite-s
effects which are of great practical significance since m
modern devices using these materials are becoming sm
and there is a need for a detailed understanding of flow p
erties. In addition, practical difficulties in dealing with mu
tiplicity in the solution set in detailed scientific studies
instabilities has led to some investigators using microsco
apparatus to isolate individual dynamical events which le
to low-dimensional chaos.~See@16,21,22,23,24#, and @17#.!
Hence there is also a need here for calculations of flow
finite domains.

We first discuss the essential details of the equation
motion and outline the numerical methods used to so
them. The detailed structure of one particular fully nonline
convecting solution is shown to be in accord with the Ca
Helfrich model. We then discuss the role of aspect ratio a
boundary conditions on the convecting solutions and sh
how multiple stable solutions arise via secondary bifurcati
The advantage of our numerical approach is then exploite
investigate the effect of material properties on electrohyd
dynamic instabilities. Finally, we address the physically r
evant situation of the effects of a fringing electric field.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The continuum theory of Ericksen@25# and Leslie@26# for
nematic liquid crystals assumes that the average molec
axis is described locally by a unit vectorn and that the ma-
terial is incompressible. That is, the constraints

FIG. 2. Schematic diagram of the Carr-Helfrich instabili
mechanism.
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nini51, ~1!

v i ,i50, ~2!

apply, wherev is the fluid velocity.
Balance laws representing conservation of linear and

gular momentum are

r v̇ i5rFi1t i j , j , ~3!

rMi1ei jk tk j1 l i j , j50, ~4!

whereF andM represent body forces and moments per u
mass,t and1 are the stress and couple stress tensors, res
tively, the superposed dot denotes the material time der
tive andei jk is the alternating tensor. The inertial term h
been omitted from the second equation, since it is gener
considered negligible. The stress and couple stress ten
have the form

t i j 52pd i j 2
]W

]nk, j
nk,i1 t̃ i j , ~5!

l i j 5eipqnp

]W

]nq, j
, ~6!

where the pressure,p, arises from the constraint~2!, W is the
elastic energy density, andt̃ is the dynamic part of the stres
tensor. The elastic energy density is assumed, follow
Frank @27#, to have the form

2W5K~ni ,i !
21K2~niei jknk, j !

21K3ni ,pnpni ,qnq

1~K21K4!@ni , jnn,i2~ni ,i !
2#, ~7!

where theKi are the elastic coefficients which are consta
for a given material. Following arguments proposed
Ericksen@28#, the elastic constants satisfy

K1.0, K2.0, K3.0. ~8!

These conditions are necessary in order that the confor
tion of the undistorted nematic corresponds to a minimum
the free energy.

The dynamic part of the stress tensor is linear in the
locity gradients and has the form

t̃ i j 5a1npnkSpkninj1a2Ninj1a3Njni1a4Si j 1a5Sipnpnj

1a6Sjpnpni , ~9!

where

Si j 5
1

2
~v i , j1v j ,i !, Ai j 5

1

2
~v i , j2v j ,i !, Ni5ṅi2Ai j nj ,

~10!

and the viscosity coefficientsa i are constants. Throughou
we adopt the Parodi relation@29#

a65a21a31a5 . ~11!
8-2
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The intrinsic viscous moment in Eq.~4! is then

ei jk@ t̃ i j #5ei jknj g̃k , ~12!

where@ t̃# represents the skew-symmetric part oft̃ and

g̃i5~a22a3!Ni1~a52a6!Si j nj . ~13!

Likewise, the body moment arising from the external elec
field can be written in terms of a contribution associated w
n and one has

rMi5ei jknjGk , ~14!

Gi5e0De~Ejnj !Ei , ~15!

De5e i2e' , ~16!

wheree i and e' denote the dielectric susceptibilities of th
material parallel and perpendicular to the director, resp
tively.

Using Eqs.~12! and~14!, the angular momentum equatio
becomes

S ]W

]ni , j
D

, j

2
]W

]ni
1Gi1g̃i1gni50, ~17!

where the scalarg is a Lagrange multiplier which arises from
the constraint~1!. The balance of linear momentum equati
becomes

r v̇ i5rFi2 p̃,i1hi1 t̃ i j , j , ~18!

with

p̃5p1W1c, ~19!

and

h̃i5g̃ jnj ,i , ~20!

wherec denotes the energy associated with the electric fi
Finally, to place restrictions on the viscosity coefficients,
use the entropy inequality

~ t̃ i j !Si j 2g̃iNi>0, ~21!

where the round brackets indicate the symmetric part of
dynamic stress tensort̃.

Equations~17! and ~18! together with Eqs.~7!, ~9!, ~10!,
~13!, and ~15! are generally known as the Ericksen-Les
equations and model flows of nematic liquid crystals that
free of ions. However, these equations are insufficient to
scribe electrohydrodynamic convection in nematics si
ionic impurities are always present and the movement of i
in the sample comprises an essential part of the instab
mechanism as described by@4#. We, therefore, supplemen
the Ericksen-Leslie equations with Poisson’s equation
the equation for conservation of charge. These are
01170
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e0Di ,i5re , ~22!

ṙe1 j i ,i50, ~23!

respectively, whereD is the electric displacement given by

Di5e'Ei1DeEjnjni ~24!

~see, e.g.,@30#!, re is the charge density within the materi
and j is the current density given by

j i5s'Ei1DsEjnjni , ~25!

Ds5s i2s' , ~26!

where the nematic’s conductivities parallel and perpendi
lar to the director are given bys i ands' , respectively. For
most nematic materialsDs is positive. Finally,

ei jkEk, j50. ~27!

A recent extension of the above description for electrohyd
dynamic convection has been proposed by@31# who consider
two active ionic species. A bipolar electrodiffusion mod
may provide an explanation for the direct onset of travel
waves observed in thin samples of nematic liquid cryst
with low conductivity when subject to a high-frequency
applied field. The standard model is however believed to
appropriate for the parameter regimes considered in
present study.

Based on experimental observations of the initial insta
ity we assume that the flow is two dimensional so that
director, velocity, and electric field vectors satisfy

n5~cosu,0,sinu!, v5~u,0,v !, E5~2f ,x,0,2f ,z!,
~28!

whereu, u, v, andf are all functions ofx andz. We assume
that the nematic liquid crystal is subject to an external
electric field acting on the areaA5@2 l /2,l /2#3@2d/2,d/2#
with the edges of the active area being atx56 l /2 and the
plates atz56d/2. Most experiments are performed using
fields to minimize the problem of charge injection at t
electrodes. Despite the fact that we consider the dc c
without charge injection we obtain good agreement with
perimental results. The angleu is a measure of the deflectio
of the director away from alignment with the plates andf is
the electric potential. Notice that the expressions forn andE
automatically satisfy the constraints~1! and~27!. The modi-
fied pressure,p̃, and the charge density,re , are also as-
sumed to be functions ofx andz alone. In order to simplify
the problem somewhat we neglect inertial terms~see@32#!
and seta150, sincea1 has been found to be very small i
most instances.

In order to implement the finite-element method, the go
erning equations and boundary conditions were recas
weak form. The resulting equations were nondimension
ized by introducing the dimensionless variables
8-3
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x̂5
x

l
, ẑ5

z

d
, û5

l

k
u, v̂5

l 2

dk
v, p̂̃5

l 2

K
p,

r̂e5
d2

e0e'f0
re , f̂5

1

f0
f, ~29!

wherek5K/a2 , and the dimensionless parameters

K5
K3

K1
, l5

e0e'f0
2

K
, r 5

l

d
, m5

ke0e'

s'd2 ,

e5
e i

e'

, s5
s i

s'

, ~30!

all of which are positive apart fromm ~for flow aligning,
rodlike nematicsa2,0!. Unless stated otherwise, we wi
use the physical values appropriate for MBBA I@N-~p-
methoxybenzylidene!-p-butylaniline# as listed in Appendix
D of @33#, namely

e50.8 and s51.5 ~31!

and the viscosity coefficients,

a2520.1, a3520.0011, a450.0826, a550.0779,
~32!

in units of kg m21 s21.
For a cell with a thickness of ten of microns which

typical for many experiments,umu'1023 and for simplicity,
we set

m50. ~33!

No-slip velocity boundary conditions and planar anch
ing of the director were applied at the top and bottom pla
The charge densityre was required to be zero along th
conducting plates. Both no-slip and stress-free lateral w
were considered. Homeotropic anchoring of the director w
applied on the no-slip lateral walls which were assumed
be perfectly insulating. The electric potentials at the top a
bottom plates were6f0/2 respectively, wheref0 was the
strength of the applied field.

The finite-element codeENTWIFE ~see@34#! was used to
solve the coupled equilibrium equations and boundary c
ditions, and to construct and solve the necessary exten
systems to compute loci of singular points. Isoparame
quadrilateral elements were employed with biquadratic in
polation for the velocity componentsû andv̂, director angle
u, charge densityr̂e , and electric potentialf̂. Discontinuous
linear interpolation was used for the modified pressure fi
p̂̃. For all choices of boundary conditions considered he
the application of the finite-element method to the weak fo
of the boundary value problem resulted in a nonlinear sys
of equations of the form

f~a,b!50, f:RN3Rp1°RN. ~34!

Apart from the problem involving fringing electrical fiel
discussed in Sec. III E the boundary value problem con
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ered here is unchanged if it is reflected about the horizo
midplane between the plates or about the vertical midpla
The discretized equations~34! are equivariant with respect t
a representation of theZ23Z2 symmetry group onRN. Our
treatment of the symmetries follows that described in@35#
who investigated the simpler problem of Be´nard convection
problem in a rectangular cavity.

Nontrivial branches were found to bifurcate from th
trivial, nonconvecting state with an increase in the elec
potential at a symmetry-breaking bifurcation point. The o
dering of the bifurcations to 1-, 2-, and 3-cell flows w
determined by the aspect ratio. We will call a solution whi
bifurcates from the trivial solution, a ‘‘primary’’ flow. The
primary one-cell flows are symmetric with respect to refle
tion about the diagonal of the rectangular domain. It is p
sible for the stability of the one-cell flows to change
symmetry-breaking bifurcation points, called secondary
furcations points. The primary two-cell flows are symmet
with respect to reflection about the vertical midplane. S
ondary bifurcation points along the two-cell prima
branches at which the stability of the two-cell flows chang
are associated with breaking of this reflectional symme
The primary three-cell flows have a threefold translatio
invariance when stress-free boundary conditions are app
Secondary bifurcations along primary three-cell branches
transcritical in nature and are associated with the breakin
this threefold invariance.

The results of two convergence studies, for stress-free
for nonslip boundary conditions at the lateral walls, are giv
in the Appendix.

III. RESULTS

A. Stress-free lateral boundary conditions

We begin the presentation of the results by discuss
details of the structure of a ‘‘typical’’ nontrivial convectin
flow. The stream function and contours of the director ro
tion, charge density and electric potential fields are shown
Figs. 3~a!–3~d! for a primary three-cell flow at an aspe
ratio of 1.5 andl5414.23 or 1.44 times the critical value a
this aspect ratio. The voltage is thus 1.2 times the value
which the nonconvecting solution loses stability to three-c
flows. As may be seen in the stream-function plot in F
3~a!, there are three cells which rotate in counterclockwi
clockwise, and counterclockwise directions from left to rig
respectively. There is upward flow between the first and s
ond cells and the return downward motion lies between
second and third cells. The directors are aligned paralle
the top and bottom plates between the cells where the fl
motion is perpendicular to the walls, as shown in Fig. 3~b!.
They are rotated in a counterclockwise direction in the fi
and third cells and clockwise in the middle cell, consiste
with the direction of flow. There is an accumulation of neg
tive charges between the first and second cells as can be
in Fig. 3~c!. These are attracted towards the positive
charged upper plate. A corresponding concentration of p
tive charges occurs between the second and third cells w
are attracted towards the lower plate. The electric poten
plot shown in Fig. 3~d! reflects this accumulation of charge
8-4
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FIG. 3. Primary three-cell flow with stress-free lateral boundaries atl5414.23 and aspect ratio 1.5.~a! Streamlines.~b! Director angle,
u. ~c! Charge density,r. ~d! Electric potential,f. Solid lines represent positive contour values, dashed lines represent negative c
values.
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where the isopotential lines are seen to be deflected tow
the upper plate in regions where there is accumulation
negatively charged ions and deflected towards the lo
plate in regions where there is accumulation of posit
charges. All of these features of the flow are consistent w
the instability mechanism described by@4#.

The role of aspect ratio, rÄ l Õd

The critical voltages at which the nonconvecting soluti
loses stability to one-, two-, and three-cell flows are plot
as a function of the aspect ratior in Fig. 4. The minimum
01170
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value of the parameterl at which convection occurs is
l'287 which corresponds to 5.7 volts for MBBA. Th
value for the critical field strength is consistent with the r
sults of linear stability analyses performed by@9# and @33#.
Henceforth we will report critical field strengths in terms
voltages, where volts50.34Al.

The minimum value for the critical field strength occu
for rolls of width 0.485d, i.e., approximately one-half of the
distance between the plates. Defining wave numberq to be
the number ofpairs of cells occurring in a length of 2pd
parallel to the plates,qcrit5(2pd)/(2* 0.485d)52.06p. In
8-5
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very large aspect ratio domains we, therefore, expect
thin rolls to be favored, a prediction that is consistent w
the experimental observations of@36,37# ~and with @24# and
@17#!, but a factor of 1/3 larger than that predicted by t
Floquet analysis of@33# ~Fig. 3, p. 1881! for the limiting dc
case. Our conclusion is not consistent with the essenti
circular rolls reported by@11# and predicted by the linea
stability analysis of@9#. The latter work was performed fo
PAA ~p-azoxyanisole! at 125 °C which has very differen
values for the dielectric anisotropy, conductivity anisotrop
and elasticity ratio than those used here. Our computatio
studies have shown, however, that while all of these mate
properties affect the most unstable wavelength~see Sec. III D
for a discussion of the role of the dielectric anisotropy!, dif-
ferences in material properties alone are insufficient to
count for such a large discrepancy in the critical waveleng
Given the contradictory experimental evidence, the issu
still one for debate, but we suggest that the more soph
cated approximation of the unstable eigenvector afforded
our finite-element approach accounts for the difference w
previous stability analyses. Both the linear stability analy
of @9# and the Floquet analysis of@33# assume that thez
dependence of the unstable mode can be approximated
single sinusoid, yet our finite element computations discl
a much more complex structure.

Distinct solution branches which arise at primary bifurc
tion points on the trivial solution can swap priority as a se
ond parameter is changed. Secondary bifurcations med
the smooth exchange of stability between flows with diff
ent numbers of cells as the aspect ratio is varied. The da
line in Fig. 4 is a path of secondary, pitchfork bifurcatio
points on the one-cell flow branches. The chained lines
paths of secondary, pitchfork bifurcation points on the tw
cell flow branches, and the dotted line indicates second
transcritical bifurcation on the three-cell branches. In
case of the one-cell–two-cell interaction, the exchange
stability takes place via the nine-branch mechanism
cussed by@38#. At the critical value of the aspect ratio, pr
mary and secondary bifurcation points all converge an

FIG. 4. Critical field strength in volts vs aspect ratior, for bi-
furcation to one-, two-, and three-cell flows with stress-free late
boundaries.
01170
ll,

ly

,
al
al

c-
.

is
ti-
y
h
s

y a
e

-
-
te

-
ed

re
-
y,
e
f
-

a

smooth exchange of priority and stability of the two prima
branches is mediated. The exchange process is mod
slightly in the case of the two-cell–three-cell interactio
since the secondary bifurcations on the three-cell flows
transcritical in nature.

The secondary bifurcations described here restabilize
stable flows allowing multiple stable solutions to exist. Th
multiplicity of solutions is important as they play a majo
role in low-dimensional dynamics as discussed by@39#.

B. Nonslip lateral boundary conditions

Imposing nonslip rather than stress-free lateral bound
conditions has a quantitative effect not only on the critic
field strength but on the convecting state that arises once
critical voltage is exceeded. The symmetries of the probl
remain unchanged and convecting flows arise from
trivial, conducting solution at pitchfork bifurcation points a
in the stress-free case. Considerations of symmetries a
would lead one to expect electrohydrodynamic convection
finite regions to behave similarly to confined Rayleig
Bénard convection. This is at odds with experiments
which flows corresponding to only one branch of the pitc
fork bifurcation have been observed, and is the subject of
current investigation.

Contours of the director angle and the charge density fo
one-cell flow with nonslip lateral walls at an aspect ratio
0.5 andl51060~1.21 times the critical value! are shown in
Figs. 5~a! and 5~b!. For comparison the director angle an
charge density for a one-cell flow with stress-free late
boundaries at an aspect ratio of 0.5 andl5348.1~1.21 times
the critical value! are shown in Figs. 5~c! and 5~d!. The over-
all features of the flow are consistent with the Helfric
mechanism, as in the stress-free case, but there are sig
cant differences between the two situations. The effect of
lateral walls on the streamlines is not very dramatic and t
are not shown. The streamlines are simply more ellipti
with the major axis of the ellipse aligned with the end wal
This reorientation of the flow field is also manifest on com
paring the contours of director angle shown in Figs. 5~a! and
5~c!. There are now regions adjacent to the end walls wh
the director is rotated in the opposite sense to the princ
orientation. Surprisingly, however, the maximum positive r
tation of the directors is approximately the same in the t
cases.~Recall that both flows are shown forl approximately
1.21 times the critical value.! The regions of weaker negativ
and positive charge densities near the left-hand and ri
hand walls shown in Fig. 5~b! are also something of a sur
prise. These border the closed regions of charge in the i
rior of the flow which are not present in the stress-free c
shown in Fig. 3.3~d!. The maximum and minimum charg
densities in Fig. 5~b! have amplitudes nearly twice those
Fig. 5~d!. Close comparison of the electric potential reve
the influence of the different charge density distributions
the two cases, but the differences are minor and are again
shown.

Role of aspect ratio, rÄ l Õd

We present the results of calculations of the neutral s
bility curves in the aspect ratio, voltage plane for the onse

l

8-6
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FIG. 5. Primary one-cell flow with nonslip lateral boundaries atl51060 at aspect ratio 0.5.~a! Director angle,u. ~b! Charge density,r.
Primary one-cell flow with stress-free lateral boundaries atl5348.1 at aspect ratio 0.5.~c! Director angle,u. ~d! Charge density,r. Solid
lines represent positive contour values, dashed lines represent negative contour values.
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one to five convection cells in Fig. 6. The solid lines des
nate loci of parameter values where stable convecting s
tions bifurcate from the no flow state and the dashed cur
indicate paths of the origin of unstable solutions. The nu
bers below the curves denote the particular state which
furcates first in the given aspect ratio range.

Cliffe and Winters @35# investigated two-dimensiona
Rayleigh-Bénard flow in small aspect ratio containers a
considered it as a two parameter problem withZ23Z2 sym-
metry. They showed that the double zero eigenvalue co
sponding to the intersection of two bifurcations which bre
01170
-
u-
s
-
i-
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k

the sameZ2 symmetry, is not stable with respect to sma
perturbations. This was found to be true even when the p
turbations respect theZ2 symmetry. The bifurcations to
1-cell and 3-cell flows~and indeed to all odd-numbere
flows!, break the same symmetries and hence the double
gular point at which these two neutral stability curves int
sect becomes disconnected. We only show the smaller o
two critical field strengths for the bifurcation to either 1-
3-cell flows. The disconnected upper parts of the neutral
bility curves are not shown for the sake of clarity. Similarl
bifurcations to 2- and 4-cell flows~and indeed to all even
8-7



u
ai
el
in
n

w
op
s

ty
el
er

e
y

two-
of

he
ite
dc
lds
ith

ic
ell
ere
r
a

ee-
r

-
ints
ot-
ties

he
he
sot-
sets
cal
the

l
n

ksz

y
d
ly

y
d-
ly

S. J. TAVENER, T. MULLIN, G. I. BLAKE, AND K. A. CLIFFE PHYSICAL REVIEW E63 011708
numbered flows! involve the breaking of the sameZ2 sym-
metry and the double singular point at which their two ne
tral stability curves intersect is also not stable. Once ag
only the lower part of the neutral stability curve for even-c
flows is shown in Fig. 6. Secondary bifurcations will aga
exist along the primary two-cell branches but these are
shown.

C. Continuation studies with stress-free lateral walls

A significant advantage of the numerical approach
have developed is that it allows us to include material pr
erties as parameters in the equations and to follow path
critical points as a function of these parameters.

1. The role of conductivity anisotropy,sÄs ¸ Õs�

We show in Fig. 7 the effect of varying the conductivi
anisotropy on the critical voltage for bifurcation to one-c
flows at an aspect ratio of 0.5. These critical values w

FIG. 6. Critical field strength in volts vs aspect ratior, for cel-
lular flows with nonslip lateral boundaries.

FIG. 7. Critical field strength in volts vs conductivity anisotrop
s, for bifurcation to one-cell flows with stress-free lateral boun
aries at aspect ratior 50.5. Triangles indicate the experimental
determined values from@40#.
01170
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computed using a 32332 element grid on one-quarter of th
domain. The effect ofs on the critical voltage has previousl
been investigated by Barniket al. @40# who obtained good
agreement between experimental data and results from
dimensional models. It is to be expected that the locus
critical voltage is asymptotic to the lines51, since that this
point s i5s' , and the charge separation required for t
Carr-Helfrich instability mechanism cannot occur. Desp
the fact that our results were calculated for MBBA I and
fields, rather than the doped MBBA mixtures and ac fie
used by@40#, we obtained good quantitative agreement w
the experimental results.

2. The role of dielectric anisotropy,DeÄe ¸Àe�Ä1Àe

We show in Fig. 8 the effect of varying the dielectr
anisotropy on the critical voltage for bifurcation to one-c
flows at an aspect ratio of 0.5. These critical values w
again computed using a 32332 element grid on one-quarte
of the domain. The dielectric anisotropy is evidentially
stabilizing factor forDe,0, since the critical voltage in-
creases as the anisotropy decreases, i.e., ase i ande' become
increasingly dissimilar. These results are largely in agr
ment with those of@40# who investigated the paramete
range on either side ofDe50. Interestingly our curve is ap
proximately the same distance below the experimental po
as the theoretical work of Barnik when the dielectric anis
ropy is zero, despite the differences in material proper
~s51.3, cf.s51.5 andK51.22, cf.K51!. However, unlike
@40#, the slope of our numerical results is approximately t
same as the experiments. As we will show in Sec. III D, t
most unstable wavelength changes with the dielectric ani
ropy and we suspect that the difference between the two
of calculations originates in our choice of seeking the criti
field for a particular wavelength, as opposed to finding
absolute minimum of the instability curves.

Note that forDe.0 we are still able to compute a critica
applied field at which an instability to a convective motio
arises. This is surprising, since forDe.0 one would expect a
static realignment of the molecules through a Freederic

-

FIG. 8. Critical field strength in volts vs dielectric anisotrop
De, for bifurcation to one-cell flows with stress-free lateral boun
aries at aspect ratior 50.5. Triangles indicate the experimental
determined values from@40#.
8-8
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transition as discussed by@41#. The exchange between the
two types of instability forDe.0 will also be addressed in
Sec. III D.

3. The role of elasticity ratio, KÄK3 ÕK1

In Fig. 9 we have plotted the natural logarithm of th
critical voltage for bifurcation to one-cell flows at an aspe
ratio of 0.5 against the natural logarithm of the elastic
ratio. It is clear that there is no simple relationship valid f
all values ofK, but for K.2, the slope of the curve is ap
proximately equal to 1/2, indicating the square root relat
predicted by@4# ~p. 238!. Their result, which is based on
balance of elastic, hydrodynamic and elastic torques, is
pected to be valid in the limit of largeK as it ignores any
elastic effects due to splay.

D. The Freedericksz transition

We now focus on the influence of the dielectric anis
ropy on the wavelength of the most unstable mode. The c
cal voltage for the onset of one-cell flows is plotted as
function of aspect ratio in Fig. 10 for a range of dielect
anisotropies. The dashed horizontal lines indicate the th
retical value of the critical voltage for the Freedericksz tra
sition for e51.05, 1.1, 1.2, 1.3, and 1.4.~The critical value is
l5p2/e — see @4#, p. 135!. Notice that for 0.9<e<1.05
there is a distinct minimum in the neutral stability curves
the onset of electrohydrodynamic convection, suggesting
there is a favored wavelength in large aspect ratio exp
ments. These minima are plotted in Fig. 11, where, con
tent with the results presented in Fig. 8, the critical volta
decreases ase increases. The widths of a single cellw, cor-
responding to these minima, are plotted in Fig. 12, wher
can be seen that the most unstable wavelength increases
matically ~and in fact doubles! as e increases from 0.6 to
1.05.

FIG. 9. The natural logarithm of the critical voltage, ln~volts! vs
the natural logarithm of the ratio of elastic constants, ln(K). The
chained line is the least-squares best fit to the 10 largest valuesK
and has a slope of 0.41.
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For e51.05 the minimum critical field for the onset o
electrohydrodynamic convection occurs below the criti
field strength at which a Freedericksz transition would oc
and is, therefore, the preferred instability. Consistent w
@40#, the results presented in Fig. 10 suggest that the tra
tion between instability resulting in convection and the sta
Freedericks transition is a continuous one and that it occ
between 1.05,e,1.1. Fore>1.1 the loci of critical voltages
for electrohydrodynamic convection have no obvio
minima and approach~from above! the critical voltage for
the Freedericks transition as the aspect ratio increases.
Freedericksz transition is therefore the preferred instabil
We observed numerically that as the critical field strength
a convective instability approaches the value for a sta
Freedericks instability, the magnitudes of theu andv com-
ponents of the unstable eigenvector~i.e., the strength of the
convective motion! decay, further suggesting a continuum
behavior.

f

FIG. 10. Critical field strength in volts vs aspect ratior, for
one-cell flows with stress-free lateral boundaries ande50.9, 0.95,
1.0, 1.05, 1.1, 1.2, 1.3, 1.4. Horizontal lines indicate the criti
field strength for a Freedericksz transition.

FIG. 11. Minimum critical field strength in volts vs dielectri
anisotropye, with stress-free lateral boundaries.
8-9
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E. The effect of a fringing field

The precise nature of the fringing electric field in a ne
atic near the edge of an electrode is still a topic of ongo
research—see, for example,@42# and @43#. These authors
suggest that the fringing field may extend for 1 or 2 g
widths beyond the edge of the electrode. Figure 13 show
six-cell flow viewed from above with up-welling at the lef
and right-hand boundaries. The white lines indicate the ed
of the two electrodes used to create an ac electric field.
lower electrode extends from left to right in Fig. 13, th
upper electrode extends from top to bottom of the figure. T
size of the active region is approximately 2003200350 mm.
The surfaces of the electrodes have been prepared so
anchor the directors in the horizontal direction. For this mo
erate voltage, the convection is clearly confined to the reg
in which the electrodes overlap. Our approach was to rep
the upper electrode with a nonslip boundary for which o
the central region was a conductor and the two outer port
were insulators, as shown schematically in Fig. 14. Only
symmetry about the vertical midplane remains, so that flo
with an even number of cells do not arise via a symme

FIG. 12. Nondimensional width of a single cellw vs dielectric
anisotropye, with stress-free lateral boundaries.

FIG. 13. Experimental realization of a six-cell flow.
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breaking bifurcation. One of the two possible two-cell flow
will arise with gradual increase of the electric field, while th
other will occur as a disconnected secondary flow. Figure
is a bifurcation diagram for the case when 90% of the up
boundary is conducting. We have chosen the vertical ve
ity at the point (x̂,ẑ)5(23/8,21/4), normalized so tha
positive velocities are upwards, i.e.,2 v̂(23/8,21/4) as a
measure of the flow. The amount of disconnection is sm
and both types of even-cell flows would be expected to
observed in an experiment. We suggest that there mus
another mechanism to account for the experimental obse
tion.

FIG. 14. Model problem to capture the effect of a fringing ele
tric field at the lateral boundaries.

FIG. 15. Bifurcation diagram for the onset of two-cell flows
an aspect ratio of 1.0 when modeling the fringing electric field. T
vertical velocity at the non-dimensionalized location (x̂,ẑ)5
(23/8,21/4), normalized so that positive velocities are upwar
i.e.,2 v̂(23/8,21/4) is plotted as a function of the applied voltag
8-10
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IV. CONCLUSIONS

We have successfully carried out a numerical study of
full Ericksen-Leslie equations for electrohydrodynamic co
vection. Our approach has enabled us to investigate the
fects of finite geometries and varying material properties
the latter has shown good quantitative agreement with av
able experimental data. Hence we are able to conclude
our results are relevant to the more common experime
situation where ac fields are used.

A primary goal of our work was to relate the steady b
furcation structure in this problem to those of Rayleig
Bénard flow, which it resembles most closely mathema
cally and Taylor-Couette flow, which it recall
experimentally. We have been partially successful in t
with the exception of elucidating the observed apparen
large disconnection of the first bifurcation in experimen
Inclusion of a fringing field is insufficient to produce th
desired effect. We, therefore, speculate that introducing
flexoelectric effect into the problem as suggested by@44#
may be the way forward. This will change the symme
properties and the disconnection of the resulting transcrit
bifurcation by a fringing field, may be sufficient to expla
the observed properties. This is the subject of future
search.
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APPENDIX: CONVERGENCE STUDIES

1. Stress-free lateral boundary conditions

In Table I we tabulate the critical parameterl correspond-
ing to the onset of one-cell flows for an aspect ratios or
50.5. The top and bottom boundaries were conduct
plates and stress-free conditions were applied at the la
side walls. The computations were performed usingN3N
element uniform grids on one-quarter of the domain. Leth be
the characteristic size of the elements. A superconvergenh4

asymptotic convergence rate is indicated, since it appe
that

lim
N→`

~Dl!N/2

~Dl!N
516,

where (Dl)N5lN/22lN .

2. Nonslip lateral boundary conditions

Table II shows the critical parameterl for the bifurcation
from the nonconvecting state to the primary one-cell flo
given conducting top and bottom plates and nonslip late
side walls at an aspect ratior 50.5.

As expected due to the presence of nonslip lateral wa
the critical value of the applied electric field required to e
tablish convective motion is considerably larger than for
case of stress-free lateral boundary conditions at equal va
of the parameters. The asymptotic convergence rate for
critical parameter value appears again to beh4.

TABLE II. Convergence study for nonslip lateral side walls.

N lN (Dl)N (Dl)N/2 /(Dl)N

4 880.415 35
8 876.317 25 4.098 10

16 875.996 45 0.320 80 12.77
32 875.971 61 0.024 84 12.91
64 875.969 88 0.001 73 14.36
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